Rotten code,
aging standards,
& pwning IPv4 parsing

K Ily K d @k oudis
or Defense A () 2022
F th S/ck Codes

agenda

the problem

what makes this interesting?
examples

(brief) history

potential defenses

credits

problem: are two IP
addresses equivalent?

example:

NetRange: 127.0.0.0 - 127.255.255.255

CIDR: 127.0.0.0/8

NetName: SPECIAL-IPV4-LOOPBACK-IANA-RESERVED

NetHandle: NET-127-0-0-0-1

Parent: ()

NetType: IANA Special Use

0riginAS:

Organization: Internet Assigned Numbers Authority (IANA)

RegDate:

Updated: 2013-08-30

Comment : Addresses starting with "127." are used when one program needs to talk to another program running on the same machine using the Internet
Comment : Protocol. 127.0.0.1 is the most commonly used address and is called the "loopback" address.

Comment *

GET /next?host=10.4.3.2 HTTP/2
Host: foo.com

issues to exploit

e different parsers treating exact same literal differently
e the same parser treating semantically equivalent literals differently

e design decisions (library interface, fail-open)

GET /next?host=127.0.0.1 HTTP/2
Host: foo.com

GET /next?host=0177.0.0.01
HTTP/2
Host: foo.com

177.0.0.1

Sable Moth illustration from The Naturalist's Miscellany (1789-1813) by George Shaw (1751-1813), CCO.

127.0.0.1 7=0177.0.0.01

CWE-707: Improper Neutralization

Weakness ID: 707
Abstraction: Pillar
Structure: Simple

Presentation Filter: | Complete
v Description

The product does not ensure or incorrectly ensures that structured messages or data are well-formed and that certain security properties are met before
being read from an upstream component or sent to a downstream component.

v Extended Description
If a message is malformed, it may cause the message to be incorrectly interpreted.

Neutralization is an abstract term for any technique that ensures that input (and output) conforms with expectations and is "safe." This can be done by:

checking that the input/output is already "safe" (e.g. validation)

transformation of the input/output to be "safe" using techniques such as filtering, encoding/decoding, escaping/unescaping, quoting/unquoting, or
canonicalization

preventing the input/output from being directly provided by an attacker (e.g. "indirect selection" that maps externally-provided values to internally
controlled values)

preventing the input/output from being processed at all

https://cwe.mitre.org/data/definitions/707.html

hypothesis:
(semantically but not
literally equivalent)

identifier comparison
is difficult

https://www.rfc-editor.org/rfc/rfc6943

law of least surprise:
surprise leads to sadness :’(

responsibly disclosed &
patched” (thank you,
triagers and patchers!)

:= README.md

Netmask

The Netmask class parses and understands IPv4 CIDR blocks so they can be explored and compared. This module
is highly inspired by Perl Net::Netmask module.

Synopsis

var Netmask = require('netmask').Netmask

var block = new Netmask('10.0.0.0/12');

block.base; // 10.0.0.0
block.mask; // 255.240.0.0
block.bitmask; // 12
block.hostmask; // 0.15.255.255
block.broadcast; // 10.15.255.255
block.size; // 1048576
block.first; // 10.0.0.1
block.last; // 10.15.255.254

block.contains('10.0.8.10'); // true
block.contains('10.8.0.10"); // true
block.contains('192.168.1.20'); // false

CVE-2021-28918 Learn more at National Vulnerability Database (NVD)
e CVSS Severity Rating ¢ Fix Information e Vulnerable Software Versions e
SCAP Mappings ¢ CPE Information

Improper input validation of octal strings in netmask npm package v1.0.6 and below allows
unauthenticated remote attackers to perform indeterminate SSRF, RFI, and LFI attacks on many of
the dependent packages. A remote unauthenticated attacker can bypass packages relying on
netmask to filter IPs and reach critical VPN or LAN hosts.

[NEW] 1
[temporary@6864517a9320 ~1$ coffee

[temporary@6864517a9320 ~1$ npm list
temporary@ /home/temporary coffee> netmask = require('netmask').Netmask
L— netmask@l.0.6 [Function: Netmask]

coffee>

[temporary@6864517a9320 ~]$ node

Welcome to Node.js v16.4.2.
Type ".help" for more information.
> const netmask = require('netmask').Netmask;

>0

36864517a9320:-" 02:55 13-Jul

https://docs.google.com/file/d/15WyD1W3lM_mn8MGqiOIIzYtoXo0NO4Vf/preview

CVE-2020-28360

e private-ip (JS, NPM package)

e incorrect categorization into
private or public IP ranges

e private-ip incorrectly parses
non-dotted-decimal input

e ‘is it private”? “is it public™?

CVE-2021-28918

e netmask (JS, NPM package)

e netmask incorrectly parses
non-dotted-decimal input

e library interface gives range, so
application logic using netmask
must categorize input

private-ip netmask

o 43,576 weekly NPM downloads e 5,687,274 weekly NPM DLs
e 22 public NPM dependent packages e 211 public NPM dependents

e 2,168 GitHub repositories e 365,501 GitHub downstream repos
downstream (~278k as of March 2021)

netmask

o 5,687,274 weekly NPM DLs 8 senn TheA Register’ a

{* SECURITY *}

Sitting comfortably? Then it's probably time to

o 211 publiC NPM dependents patch, as critical flaw uncovered in npm's netmask
package

Are you local? Catastrophically local?

Richard Speed Mon 29 Mar 2021 // 18:27 UTC

. 365 y 50 1 G itH u b d OWn Strea m re pOS The widely used npm library netmask has a networking vulnerability arising

from how it parses IP addresses with a leading zero, leaving an estimated

(~278k as of March 2021) u

Researchers Victor Viale, Sick Codes, Kelly Kaoudis, John Jackson, and Nick
Sahler have disclosed a digital nasty, tracked as CVE-2021-28918, in the
hugely widespread netmask npm package.

[temporary@b58fdbe3c702 ~]$! [temporary@b58fdbe3c702 ~]$

ab58fdb83c782:

https://docs.google.com/file/d/15qkYyQgGPt3_RdD7jFrS1JEs8cUS2Goo/preview

javascript quirks
e 0-prefix base-8 literals pre-ESS (example 0254.021.011.02)

e 08 and 09 do not result in parser error unless ‘use strict’
(and then octal literals start with *00")

what makes this useful?
e access internal IPs (SSRF)

e access localhost/127.0.0.1 (SSRF, LFI)
e reference exploit code from outside the network, by host IP (SSRF, RFI)

Improper input validation of octal strings in netmask npm package v1.0.6 and below allows

unauthenticated remote attackers to perform indeterminate SSRF, RFI, and LFI attacks on many of
the dependent packages. A remote unauthenticated attacker can bypass packages relying on
netmask to filter IPs and reach critical VPN or LAN hosts.

Daniel & Stenberg

@bagder - Sep 27, 2018

| learned that getaddrinfo() converts IPv4 addresses given as
octal to decimal. See "ping 0177.0.0.1" or even "curl 0177.0.0.1"
... (the latter usually gets a 400 due to the funny Host:)

O 12 O A

Nicolas Grégoire
@Agarri_FR

Replying to @bagder

| often use these conversions in order to bypass
anti-SSRF blacklists. Cf pages 24 to 28 for
additional formats agarri.fr/docs/AppSecEU1...

10:51 AM - Sep 27, 2018

NORMAL

PERSON SCIENTIST

T GUESS I I WONDER IF

SHOULDNT DO THAT

Oo

https://xkcd.com/242/

[NEW] |
[temporary@8bf9ad70a5cc ~]$ archlinux-java status
Available Java environments:

java-1l-openjdk (default)
[temporary@8bf9ad70aScc ~]$ java -version
openjdk version "11.0.11" 2021-04-20
OpenJDK Runtime Environment (build 11.0.11+9)
Open]DK 64-Bit Server VM (build 11.6.11+9, mixed mode)
[temporary@8bf9ad70a5cc ~]$ javac -version
javac 11.0.11
[temporary@8bf9ad70aScc ~]$

java.net.InetAddress[]
java.net.URI;
java.net.URL;

class Main {
public static void main(String args[]) {

try {
System.out.printin();
String input =
InetAddress addr = InetAddress getByName(input),
System.out.printin(+ input +

System.out.printin()i

String inputl =

InetAddress addrl = InetAddress getByName(inputl);
System.out.println(+ inputl +

System.out.printin()3

String input2 = H

InetAddress addr2 = InetAddress.getByName(input2);
System.out.println(+ input2 +

System.out.printin()3

String input3 =

InetAddress addr3 = InetAddress getByName(input3);
System.out.println(+ input3 +

System.out.printin(

String inputd =

InetAddress addrd = InetAddress getByName(input4);
System.out.println(+ inputd +

System.out.printlin(¥5
String input5 = s

InetAddress addr5 = InetAddress.getByName(input5);
System.out.printin();
System.out.printin(+ input5 +

+ addr.toString());

addrl.toString());

addr2.toString());

addr3.toString());

)i

addr4.toString());

addr5.toString());

https://docs.google.com/file/d/1V-Q2uZoP_O9fP-pB1xep8FXEuBo-aChN/preview

Menu ©)bpo-36384:Remove X @ Issue 36384; [securlt X |+

Qo = G X

g::;{:;: < C B | @ github.com/python/cpython/pull/12577/files LR L ® =
“Lik /i id html#i id I
+ 1) p O Why GitHub? - Team Enterprise Explore - Marketplace Pricing Search Signin | Signup
+ 2) p
select a & python/cpython) Sporsor Qi Nosifications €r St 389K Yok 193k
loading
“ar“{"g: » Code) Pull requests L& (&) Actions) Security L~ Insights
resolvin
looking
Packages bpo-36384: Remove check for leading zeroes in IPv4 addresses #12577 | Newisee
Total In §= Merged) ncoghlan merged 3 commits int0 gpython:master from Tveunctis-issue-sa384 (5] on Mar 30, 2019 |e)))
Net Upgr
Conversation @ Commits @ [® Files changed 3 44 -15 mom—m)
:: Proce
:i;i; C: Changes trom all commita » File filter + Conversations >~ Jump to ~ @-
4
gi;i; }:: v 4 6 mEmmm Lib/ipaddress.py [0
:: Proce 2 3 99 -1165,12 +1165,6 0@ def _pars octet_str);
(1/1) re ValueError (msg + str(SUSPECT), shell=True
:: Runni vert to integer (we know @ legal)
(1/1) Ar octet_int = int(octet_str, 19)
add pyth by octets that look 1ike they *smignt® be written in actal
[tempora N Gon't Look exec sape 10 both octal and
1 & decimal are rejected as amdiguous + str(BAD_IP) ' she[l:‘frue'
A if octet_int > 7 and octet str{8] == '9':
1 msg = TAmbiguous (octal/decimal) value in Xr not permitted”
raise ValueError{msg % octet_str)
Af octet_int > 255:
ralse ValueError("Octet %d (> 255) not persitted™ % octet_int)
return octet_int
v 5 12 mmmm Lib/test/test_ipaddress.py [0

v92,14 PP der pickle test(sSelf, mir)

¥y = pickle. loags(pickle.dusps(x, proto})
self.assertEqual(y, x)

" [readonly] 24L, 1039B

22:47 85-3ul

https://docs.google.com/file/d/1d-6TABFJsEmDlTuV9ySFSHfES7okpkAa/preview

what did the NIST analysts think?

CVE-2020-28360
CVE-2021-28918
CVE-2021-29418
CVE-2021-29662
CVE-2021-29424
CVE-2021-29921
CVE-2021-29923
CVE-2021-29922
CVE-2021-33318

Javascript “private-ip”

Javascript “netmask”

Javascript “netmask” (found by ryotak)

Perl “Data::Validate::IP”

Perl “Net::Netmask” (found by Joelle Maslak)
Python stdlib “ipaddress”

Golang standard library “net”

Rust standard library “net”

NET C# “IpMatcher”

critical, 9.8
critical, 9.1
medium, 5.3
high, 7.5
high, 7.5
critical, 9.8
high, 7.5
critical, 9.1
critical, 9.8

language

prefix

Javascript ‘0o’ when ‘use strict’,
‘0’ otherwise

Perl ‘0o’ or ‘o’ (optional)

Python ‘0o’

Golang MoK

Rust ‘0o’ prefix (also std::fmt::Octal)

Ruby ‘0o’ or ‘0’ (optional)

NEYE "0’

Scala (after 2.10), Kotlin

no octal literal prefix! yolo

C# o}
F# ‘0o
C, C++ o}

archaeology

If the af argument of inet_pton() is AF_INET, the src string shall
be in the standard IPv4 dotted-decimal form:

ddd.ddd.ddd.ddd

where

= function does not accept other formats| (such
as the octal numbers, hexadecimal numbers, and fewer than four
numbers that inet_addr() accepts).

RFC 6943, Issues in Identifier Comparison for Security Purposes

source: https.//www.mckusick.com/beastie/index.htm|

manpages!

STANDARDS

The inet_ntop() and inet_pton() functions conform to X/Open Networking Services - —— X1\ Sl Note that i _pton() does not
acce il 2 r 3-part dotted addresses; all four parts must be specified and |are interpreted only as decimal values This is a narrower

gt -,.2-,"0 a
input set’than that accepted by inet_aton().
HISTORY

These functions appeared in 4.2BSD.

https://www.unix.com/man-page/FreeBSD/3/inet_pton/

HISTORY

The inet_addr(), inet_network(), inet_makeaddr(), inet_lnaof() and
inet_netof() functions appeared in 4.2BSD. They were changed to use

in_addr_t in place of unsigned long in NetBSD 2.0. The inet_aton() and
inet_ntoa() functions appeared in 4.3BSD. The inet_pton() and
inet_ntop() functions appeared in BIND 4.9.4 and thence NetBSD 1.3; they
were also in X/Open Networking Services Issue 5.2 ("XNS5.2'').

https://man.netbsd.org/NetBSD-8.0/inet_pton.3

as builders, what can we do better?

validate dependencies work as expected
happy-path and negative end to end tests
also, static analysis and fuzzing can help
learn from failures and regressions

follow existing convention (where possible)
bonus: pay attention to vuln releases
(props to Joelle Maslak)

References

Original talk (DEF CON 29)

CVE-2020-28360: Javascript “private-ip” NPM package

CVE-2021-28918: Javascript “netmask”™ NPM package

CVE-2021-29921: Python stdlib “ipaddress”

CVE-2021-29922: Rust standard library “net”

CVE-2021-29923: Golang standard library “net”

CVE-2021-29662: Perl module “Data::Validate::IP”

Oracle S1446698 (fix ongoing, also in DEF CON 29 talk): Java standard
library “java.net.InetAddress”

o CVE-2021-33318: .NET “IpMatcher”, “Watson Web Server’ NuGet packages

http://youtube.com/watch?v=_o1RPJAe4kU
https://github.com/sickcodes/security/blob/master/advisories/SICK-2020-022.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-011.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-014.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-015.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-016.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-018.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-060.md

whoami

senior software engineer

application security TL at $company

good-faith hacker

kaoudis on most social media, hi@kellykaoud.is

credit also to

Sick.Codes

John Jackson (johnjhacking)
Victor Viale (koroeskohr)
tensor_bodega

Harold Hunt (huntharo)
Cheng Xu (xu-cheng)

Note: none of this research was paid for, all followed coordinated vendor disclosure

thank you!

