
Rotten code,
aging standards,
& pwning IPv4 parsing
Kelly Kaoudis, @kaoudis
Institute for Defense Analyses (IDA), 14 Jul 2022
originally presented at DEF CON 29 with Sick Codes

agenda
● the problem
● what makes this interesting?
● examples
● (brief) history
● potential defenses
● credits

problem: are two IP
addresses equivalent?

example: 127.0.0.1

GET /next?host=10.4.3.2 HTTP/2
Host: foo.com
…

CONFIG
IF host == 127.0.0.1 DENY

IF host IN 10.4.3.0/24, ALLOW
…

10.4.3.2

10.4.3.3

issues to exploit

● different parsers treating exact same literal differently

● the same parser treating semantically equivalent literals differently

● design decisions (library interface, fail-open)

GET /next?host=127.0.0.1 HTTP/2
Host: foo.com
…

X

CONFIG
IF host == 127.0.0.1 DENY

IF host IN 10.4.3.0/24, ALLOW
…

GET /next?host=0177.0.0.01
HTTP/2
Host: foo.com
…

177.0.0.1

?

? CONFIG
IF host == 127.0.0.1 DENY

…

Sable Moth illustration from The Naturalist's Miscellany (1789-1813) by George Shaw (1751-1813), CC0.

127.0.0.1 ?= 0177.0.0.01

https://cwe.mitre.org/data/definitions/707.html

hypothesis:
(semantically but not
literally equivalent)
identifier* comparison
is difficult

*https://www.rfc-editor.org/rfc/rfc6943

law of least surprise:
surprise leads to sadness :’(

responsibly disclosed &
patched* (thank you,
triagers and patchers!)

https://docs.google.com/file/d/15WyD1W3lM_mn8MGqiOIIzYtoXo0NO4Vf/preview

● private-ip (JS, NPM package)

● incorrect categorization into
private or public IP ranges

● private-ip incorrectly parses
non-dotted-decimal input

● “is it private”? “is it public”?

● netmask (JS, NPM package)

● netmask incorrectly parses
non-dotted-decimal input

● library interface gives range, so
application logic using netmask
must categorize input

CVE-2020-28360 CVE-2021-28918

● 43,576 weekly NPM downloads

● 22 public NPM dependent packages

● 2,168 GitHub repositories
downstream

● 5,687,274 weekly NPM DLs

● 211 public NPM dependents

● 365,501 GitHub downstream repos
(~278k as of March 2021)

private-ip netmask

● 5,687,274 weekly NPM DLs

● 211 public NPM dependents

● 365,501 GitHub downstream repos
(~278k as of March 2021)

netmask

https://docs.google.com/file/d/15qkYyQgGPt3_RdD7jFrS1JEs8cUS2Goo/preview

so what?

javascript quirks

● 0-prefix base-8 literals pre-ES5 (example 0254.021.011.02)

● 08 and 09 do not result in parser error unless ‘use strict’
(and then octal literals start with ‘0o’)

● access internal IPs (SSRF)

● access localhost / 127.0.0.1 (SSRF, LFI)

● reference exploit code from outside the network, by host IP (SSRF, RFI)

what makes this useful?

https://xkcd.com/242/

https://docs.google.com/file/d/1V-Q2uZoP_O9fP-pB1xep8FXEuBo-aChN/preview

https://docs.google.com/file/d/1d-6TABFJsEmDlTuV9ySFSHfES7okpkAa/preview

Javascript “private-ip”
Javascript “netmask”
Javascript “netmask” (found by ryotak)
Perl “Data::Validate::IP”
Perl “Net::Netmask” (found by Joelle Maslak)
Python stdlib “ipaddress”
Golang standard library “net”
Rust standard library “net”
.NET C# “IpMatcher”

what did the NIST analysts think?
critical, 9.8
critical, 9.1

medium, 5.3
 high, 7.5
high, 7.5

critical, 9.8
high, 7.5

critical, 9.1
critical, 9.8

CVE-2020-28360
CVE-2021-28918
CVE-2021-29418
CVE-2021-29662
CVE-2021-29424
CVE-2021-29921
CVE-2021-29923
CVE-2021-29922
CVE-2021-33318

language prefix

Javascript ‘0o’ when ‘use strict’,
‘0’ otherwise

Perl ‘0o’ or ‘o’ (optional)

Python ‘0o’

Golang ‘0’

Rust ‘0o’ prefix (also std::fmt::Octal)

Ruby ‘0o’ or ‘0’ (optional)

Java ‘0’

Scala (after 2.10), Kotlin no octal literal prefix! yolo

C# ‘0’

F# ‘0o’

C, C++ ‘0’

archaeology

RFC 6943, Issues in Identifier Comparison for Security Purposes

source: https://www.mckusick.com/beastie/index.html

manpages!

https://www.unix.com/man-page/FreeBSD/3/inet_pton/

https://man.netbsd.org/NetBSD-8.0/inet_pton.3

as builders, what can we do better?

● validate dependencies work as expected
● happy-path and negative end to end tests
● also, static analysis and fuzzing can help
● learn from failures and regressions
● follow existing convention (where possible)
● bonus: pay attention to vuln releases

(props to Joelle Maslak)

References

● Original talk (DEF CON 29)
● CVE-2020-28360: Javascript “private-ip” NPM package
● CVE-2021-28918: Javascript “netmask” NPM package
● CVE-2021-29921: Python stdlib “ipaddress”
● CVE-2021-29922: Rust standard library “net”
● CVE-2021-29923: Golang standard library “net”
● CVE-2021-29662: Perl module “Data::Validate::IP”
● Oracle S1446698 (fix ongoing, also in DEF CON 29 talk): Java standard

library “java.net.InetAddress”
● CVE-2021-33318: .NET “IpMatcher”, “Watson Web Server” NuGet packages

http://youtube.com/watch?v=_o1RPJAe4kU
https://github.com/sickcodes/security/blob/master/advisories/SICK-2020-022.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-011.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-014.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-015.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-016.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-018.md
https://github.com/sickcodes/security/blob/master/advisories/SICK-2021-060.md

whoami
● senior software engineer
● application security TL at $company
● good-faith hacker
● kaoudis on most social media, hi@kellykaoud.is

● Sick.Codes
● John Jackson (johnjhacking)
● Victor Viale (koroeskohr)
● tensor_bodega
● Harold Hunt (huntharo)
● Cheng Xu (xu-cheng)

Note: none of this research was paid for, all followed coordinated vendor disclosure

credit also to

thank you!

